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Figure 1 Correlation of the impact event 66 Myr ago with basalt eruptions. (a) Carbon isotope record (6'>C, %) of benthic foraminifers and coarse
fraction of deep-sea sediments, both indicative of the impact event; (b) abrupt increase of Deccan traps eruption rate at the impact event!'"!
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Figure 2 Location diagram of the asteroid belt in the Solar System.
Artistic presentation. Sizes and distances are not in scale
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Figure 3 Cosmic dust. (a) Dust sources in the Solar system; (b) its
atmospheric entry and accumulation on Earth®'
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Table 1 The three largest impact structures on Earth®”)
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Figure 4 The worldwide distribution of the four main tektite strewn
fields™
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Table 2 The major impact events in geological records
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Figure 5 Location map of the major impact events in geological records (see Table 2; modified from Ref. [36])
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Figure 6 The mid-Ordovician meteorite event and its related global
environmental changes. The figure shows the mid-Ordovician limestone
section in Southern Sweden where the meteorite horizon corresponds to
the onset of a glacial sea level fall®®!
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Just as understanding national history requires a global context, studying Earth’s evolution must account for extraterrestrial
factors. The rapid advancement of space science and technology in recent decades has enabled an unprecedented
convergence of astronomy and Earth sciences. The time has come for a more holistic approach of extraterrestrial processes
as external driving forces for the evolution of the Earth system.

During Earth’s formation, the early Solar System was highly unstable — a fact evidenced by the impact origin of the
Moon. Later in Earth’s history, the asteroid belt became the dominant source of instability affecting our planet. The most
noticeable phenomena are impact events caused by extraterrestrial bodies, reflecting how the evolutionary history of
asteroid families influences Earth’s environment. Indeed, many major climate transitions throughout Earth’s history were
driven by such extraterrestrial events. An example is the Chicxulub crater in Mexico, which records the impact event 66
million years ago that led to the mass extinction of dinosaurs. Beyond surface craters and meteorites, dust produced by
collisions within the asteroid belt can also profoundly influence climate and the biosphere as revealed by geochemical
signatures in geological records. While the efforts of locating meteorites and impact craters will continue, emphasis should
also be placed on geochemical methods — particularly trace elements and isotope analyses.

The detection of numerous exoplanets has highlighted the distinctive architecture of our own solar system. This
uniqueness stems from an early solar system event known as the Jupiter’s “Grand Tack”, which positioned Earth and other
inner planets within the “habitable zone” and led to the formation of the main asteroid belt. Although the era of major
planetary migration has ended, chaotic gravitational interactions among Solar System bodies continue to affect Earth’s
climate through orbital variations. This has inspired an emerging research direction: reconstructing the long-term evolution
of celestial motions from geological records.

Another major discovery is that organic molecules can be synthesized directly within interstellar nebulae, implying that
life may not have originated on Earth. It is plausible that the emergence of life represents a new phase in cosmic evolution,
with origins potentially beyond our planet. Perplexing, life appeared on Earth roughly a billion years after its formation, yet
the evolution from prokaryotes to eukaryotes—or the formation of the cell nucleus—took additional two billion years. This
irregular pace of evolution seems difficult to explain through terrestrial processes alone, making an extraterrestrial origin of
life a compelling alternative.

We believe that deeper integration of astronomy and Earth will form a cornerstone of the “upgraded Earth system
science”. However, bridging the considerable gap between these disciplines poses immense challenges. They differ
profoundly in spatiotemporal scales, methodologies, and even terminology. A phased approach is therefore
recommend — starting with small-scale projects and workshops to fertilize interdisciplinary collaboration, with the
ultimate goal of achieving transformative scientific breakthroughs in uncovering the roles of extraterrestrial forcing in the
evolution of the Earth system.

asteroid belt, impact events, Jupiter’s “Grand Tack”, “chaos” in Solar system, extraterrestrial origin of life
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